AFRL-SR-BL-TR-98- ### REPORT DOCUMENTATION PAGE Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for re Operations and Reports, 1215 Jefferson Davis Highway, Suite 1201, Artington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reducti | 004 | 5 | |-----|---| |-----|---| | 1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE | 3. REPORT TYPE AND DA | TES COVERED | |--|--------------------------------|--------------------------|--| | | 02 Sep 97 | Final Tech | Report, 01 Dec 93 - 31 May 97 | | 4. TITLE AND SUBTITLE | | | 5. FUNDING NUMBERS | | Modeling and Visualization for I | Polymers, Surfaces and Biomo | lecules | | | | | | F49620-94-1-0080 | | | | | | | 6. AUTHOR(S) | | | · . | | Professor Chandrajit L. Bajaj | • | | | | | | | | | T DEDECOMBRO ODGARIZATION NARRE(C) A | MID ADDDECC(FC) | | 8. PERFORMING ORGANIZATION | | 7. PERFORMING ORGANIZATION NAME(S) A Purdue University | IND ADDRE22(E2) | | REPORT NUMBER | | • | | | | | W. Lafayette IN | | | 4 . | | | | | | | | | | | | 9. SPONSORING/MONITORING AGENCY NAM | ME(S) AND ADDRESS(ES) | | 10. SPONSORING/MONITORING | | AFOSR/NM | ., | | AGENCY REPORT NUMBER | | 110 Duncan Avenue Suite B115 | | | | | Bolling AFB DC 20332-8050 | | | | | | | | | | • | | | | | 11. SUPPLEMENTARY NOTES | | | | | | | | | | | | | | | | | | Last Biographic Cont | | 12a. DISTRIBUTION AVAILABILITY STATEME | :NI | | 12b. DISTRIBUTION CODE | | Distribution Unlimited. | | | | | Distribution Unlimited. | | | i | | | | | | | | | • | | | 13. ABSTRACT (Maximum 200 words) | | | | | | | | | | Distributed data filtering algorith | ms for automatically reconstru | cting scalar fields such | as potential energy surfaces have been | | developed. | | | | | | | | | | | | | DECTED & | | DTIC QUALITY INSPECTED 8 | | | | | | | _ - | | # 19980115 209 | 14. SUBJECT TERMS | | | 15. NUMBER OF PAGES | |---------------------------------------|--|---|-------------------------------| | Polymers, biomolecules, grap | phical simulation | | 4 | | | • | | 16. PRICE CODE | | 17. SECURITY CLASSIFICATION OF REPORT | 18. SECURITY CLASSIFICATION OF THIS PAGE | 19. SECURITY CLASSIFICATION OF ABSTRACT | 20. LIMITATION OF
ABSTRACT | | Unclassified | Unclassified | Unclassified | UL | Accepted a/e/97 Final Technical Progress Report (01 September 96 - 31 May 97) Project Title: Modeling and Visualization for Polymers, Surfaces and Biomolecules PI Name (Last, First, MI): __Bajaj, Chandrajit, L.__ Institution: __Purdue University ______ 2304/DS Contract/Grant No. __F49620-94-1-0080___ NM and ___F49620-93-1-0553 (Aasert)___ NX NM (AASERT Supplement) #### SUMMARY OF RESEARCH OBJECTIVES Our research emphasizes efficient algorithms and data structures for biomolecular modeling and visualization. The main research thrusts of this contract are: - 1. The computation of the topological, combinatorial and metric properties of the molecular structure of polymers and biomolecules based on weighted \$\alpha\$ shapes - 2. The determination of similarities between two or more polymers or biomolecules based on geometric matching of the determined structural properties of the molecules - 3. The development and graphical simulation of localized molecular docking strategies based on road map calculations on convolution surfaces of the interacting molecule structures and localized regions of the potential energy surfaces - 4. The modeling, visualization and manipulation of the molecules together with their potential energy surfaces. - 5. The implementation of the above algorithms in an existing distributed (multi-user and multi-workstation) geometric software environment. #### SUMMARY OF TECHNICAL PROGRESS 1. In our quest for real-time, interactive modeling and visualization of polymers, biomolecules, and associated scalar fields we have developed and implemented scattered data fitting algorithms in our SHASTRA distributed and collaborative software environment. The implementation is fully distributed, harnessing the collective power of networked workstations. It is capable of automatically reconstructing (accurately and smoothly) the union of balls structures as well as scalar fields such as electron density and potential energy surfaces. This research is reported in publications 1, 2, 4, 5 and 6 below. 2. The AASERT supplement to the grant supported graduate students Susan Evans and Dan Schikore. Together with Susan and Dan we studied problems in molecular surfaces (arbitrary topology) using different spline representations. Furthermore we analyze the suitability of these patch representations for visualizing scalar functions such as molecular orbitals and potential interaction energies. This research has resulted in publications 3, 7, 8 below. - 12. a. Number of AFOSR supported: - i. Papers published or accepted for publication in refereed journals: _1 - ii. Papers published or accepted for publication in refereed conferences: _4 - iii. Books or book chapters published or in press: __3 - b. Trainee Data: Total 8 Female 2 Male 6 Minority 0 Non Us Citizen 5 - i. No. of Grad Students 6 - ii. No. of Postdoctorals 0 - iii. No. of Undergraduates 1 - d. Awards/Honors to PI and/or members of PI's research group (please describe). Awarded Visualization Chair, The University of Texas at Austin, Austin, TX. Appointed Director of the Visualization Research Center with the Texas Institute of Computational and Applied Mathematics (TICAM), The University of Texas at Austin. e. Brief description of all transitions (or intended transitions) of your ideas or techniques to industry, to military laboratories or to military application. We have been collaborating with WPAFB, (Ruth Pachter) on our molecular modeling, docking and similarity computations. We provided our alpha shapes modeling and visualization software to Ruth and her group to enable them to visualize molecular surfaces and properties (using our A-splines) for siloxane polymers with NLO moeities. This visualization shall be coupled to the GROPE system which WPAFB has recently acquired. Adittionally, we plan to transition Dynamic Mesh Simplification, Compression and Visualization Techniques to the Institute of Defense Analysis, Arlington, VA. g. Attach list of papers and other publications with full citation. [1] "Rational Parameterizations of Nonsingular Cubic Surfaces", (with R. Holt and A. Netravali). Full version accepted for publication in {ACM Transactions on Graphics}, (1997). [2] Book: {\sf Scientific Visualization Techniques}, John Wiley and Sons, (1997) [3] `Splines and Geometric Modeling", (with S. Evans) {CRC Handbook of Discrete and Computational Geometry}, edited by J. Goodman and J. O'Rourke, CRC Series, {Discrete and Combinatorial Mathematics}, (1997), 833 - 849. [4] Book Chapter: "Implicit Surface Patches", {Introduction to Implicit Surfaces}, edited by J. Bloomenthal, {Morgan Kaufman Publishers}, (1997), 98 - 125. [5] "Interrogative Data Visualization", (Invited Paper at the 7th IMA Conference on the Mathematics of Surfaces), {The Mathematics of Surfaces VII}, edited by T.N.T. Goodman and R. Martin, {Oxford University Press}, (1997). [6] "NURBS based B-rep Models for Macromolecules and their Properties", (with H-Y. Lee, R. Merkert, V. Pascucci), {Proc. of the 1997 ACM Symposium on Solid Modeling}, ACM Press, (1997), Atlanta, Georgia, 217 - 228. [7] "Contour Trees and Small Seed Sets for Isosurface Traversal", (with M. van Kreveld, R. van Oostrum, V. Pascucci, D. Schikore) {Proc. of the 13th Annual ACM Symposium on Computational Geometry}, ACM Press, (1997), Nice, France, 212 - 219. [8] "The Contour Spectrum", (with V. Pascucci, D. Schikore) {Proc. of the Annual IEEE Visualization Conference}, IEEE Computer Society Press, (1997), Phoenix, Arizona. #### h. List of Invited Presentations Dagstuhl-Seminar on Scientific Visualization, Schloss Dagstuhl, West Germany, May 1997. Minisymposium on Reverse Engineering, Conference on Computer Aided Geometric Design, Lillehammer, Norway, July 1997. IMACS conference on Problem Solving Environments Berlin, Germany, August 1997. Invited Speaker at the Laredo Course on Applications of Symbolic Computing, Laredo, Spain, September 1997. Invited Speaker for a Tutorial at Eurographics '97, Budapest, Hungary, September 1997. Invited Speaker for the Conference on New Themes in Computer Aided Geometric Modeling, Tel-Aviv, Israel, February 1998 Invited Speaker at the Mathematisches Forschungsinstitut Oberwolfach Seminar on Free-Form Curves and Surfaces, West Germany, June 1998. i. List of Program Committees Served Pacific Graphics '97, Korea, 1997 Computer Graphics International '97, Belgium, 1997. Workshop on Algorithms and Data Structures '97, WADS, Halifax, Canada 1997. Program Committee Member of the IEEE Visualization Conference '97, Phoenix, Arizona, October 1997. Program Committee Member of Fifth International Conference on Computer-Aided Design and Computer Graphics, Shenzhen, China, December 1997. Program Committee Member of the ACM symposium on Computational Geometry (Theory) Minneapolis, MN, June 1998. Program Committee Member of IMA Math of Surfaces VIII, Birmingham, UK, August 1998.